
Multimodal Interfaces with 
Microsoft.Ink

Joan Pastor Pellicer
María José Castro

jpastor@dsic.upv.es, mcastro@dsic.upv.es

Universitat Politècnica de València
Departament de Sistemes Informàtics i Computació



Table of Contents
● Online Handwritting Recognition Systems
● Multimodal Systems
● Microsoft Tablet PC Sdk

○ InkOverlay
○ Recognizer
○ Gestures
○ InkEdit Control



Online Handwriting 
Recognition Systems
● We know (or just have a little idea) how a 

handwritten recognition system works.

● Online Handwriting Recognition Systems: 
○ we know the strokes written by the user
○ we know the direction of the stroke

● Given a sequence of points (strokes) try to 
recognize the written text.



Online Handwriting 
Recognition Systems

How can I use it in my application?

What can I do if I want to add a new 
input source to my application?



Multimodal Systems
Multimodal interaction provides the user with 
multiple modes of interfacing with a system.

Example:
○ When you call to any call center: use numbers or 

voice.
○ Smartphones (touch)
○ Kinnect
○ Siri, Google Now
○ Disabled people



Microsoft Handwriting 
Recognition with Digital Ink
● Microsoft provides a set of handwriting 

recognition tools in different versions of 
windows.

● Provides components and controls for .NET 
applications.

● Tablet PC: Digital Ink



Microsoft Windows XP 
Tablet PC Edition
● Add pen based capabilities

● Add "digital ink" to a full range of Windows 
applications.

● The digitized handwriting can be converted 
to standard text through handwriting 
recognition, or it can remain as handwritten 
text.



Microsoft.Ink Library
Class Name Description

Divider Analyzes ink to distinguish text from pictures.

DrawingAttributes Controls appearance of ink, such as color, line width, and so on.

Gesture Ink interpreted as a command.

Ink The main container to hold ink. Holds the collection of strokes that make up ink input. 
Supports moving ink between memory and disk. Supports clipboard actions on ink.

InkCollector Snap-on support for creating a basic ink-enabled window.

InkOverlay Snap-on support for adding ink-enabled support to existing application windows.

PenInputPanel An in-place input window for adding in-place ink input for existing controls.

Recognizer Provides language-specific conversion of ink strokes to text and the system dictionary with 
common words in a given language.

RecognizerContext Organizes the input elements needed for ink-to-text conversion: a recognizer, hints about 
data type (factoid), and an application-specific dictionary (word list).

Renderer Draws ink onto a drawing surface.

Stroke A set of (x,y) point values generated by a pen. A stroke starts when a pen makes contact 
with the drawing surface, and includes the locations traversed by the pen until the pen is 
lifted from the drawing surface.

Strokes collection Holds a set of strokes.



InkOverlay (Windows 
Form)
Can be attached to a application window (or 
control) and be used as ink input control.

(http://pastebin.com/AzsYK666)

http://pastebin.com/AzsYK666


Canvas (WPF)



Gestures
A gesture is a special movement with the pen:

● Draw some form: 

● A direction movement: 

● A tap (like a mouse click or double)



Gesture Event:

○ Add a InkCollectorGestureEventHandler for the 
Event Gesture.

○ Activate Ink and Gesture Mode.

○ Set the status of the recognize Gestures.

(http://pastebin.com/c12wbhe0)

Gesture

http://pastebin.com/c12wbhe0


Gestures



Stroke and Strokes
● Stroke is a temporal sequence of points.

● Numbers and letters written by more than 
one stroke: "f" or "t"

● In Handwriting, a word can be only one 
stroke 

● General drawing or gestures



Strokes and Stroke
● Strokes is a collection of strokes.
● Individual strokes can be accessed by index.

● Stroke is an array of points.
● Individual points can be accessed by index.

● You can modify (add, delete, update) by code 
these attributes.(http://pastebin.com/0MDE2hJf)

● You can check the intersections between 
strokes.

http://pastebin.com/0MDE2hJf


Recognizing Strokes
● Convert these strokes into text requires a 

Recognizer.
● Language and locale properties of the 

recognizer.

● Recognizer object with a set of installed 
recognizers.

● It is needed to select a recognizer (usually 
the first) and create a context in order to 
start the recognition.



Creating Strokes from the 
scratch
● Convert a set of coordinates in Strokes.
● Set of points detected by Kinnect.

(http://pastebin.com/makQDFtd)

http://pastebin.com/makQDFtd


Recognizing Strokes
● Factoid: To give an intuition (or a hint) 

about the text to recognize.
○ DIGIT
○ HIRAGANA/KATAKANA
○ ONECHAR
○ TIME
○ ...

● WordList:
○ You can add your own list of words



Recognizer and hypothesis
● Use the RecognizerContext to perform the 

Strokes recognition.

● The result is a list of n-best hypothesis with 
their confidences.

(http://pastebin.com/SB13uU5h)

http://pastebin.com/SB13uU5h


Events and Recognition 
instance
We can Recognize at any time (invoking 
recognize method):
● Pushing a button (click event)
● Losing focus (leave out the control)
● Pen up Event

○ Problem: More than one stroke
○ Solution: Use a timer

(http://pastebin.com/wtjTAqbr)

http://pastebin.com/wtjTAqbr


InkEdit Control
● Control derived from RichTextBox

1. Captures Ink
2. Removes Ink
3. Displays the recognized text within the 

textbox.



Adding InkEdit to Visual 
Studio

1. Right-click on Toolbox
2. Select Customize Toolbox
3. Select the .NET Framework Components 

tab
4. Check InkEdit and click OK



Adding InkEdit to Visual 
Studio



Controlling Recognition
RecoTimeOut: 2000 ms by default

● Events:
○ Gesture 
○ Recognition

(http://pastebin.com/L1TLsqb8)

http://pastebin.com/L1TLsqb8


Thank you

Grazie!


